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We consider the variational problem associated with the equilibrium shape of 
crystals resting on a table in a gravitational field. For two-dimensional crystals 
the shape can be calculated explicitly, i.e., reduced to quadrature. In three 
dimensions only qualitative results are available. The most interesting new result 
is that for large crystals, under suitable conditions, the top may be a corrugated 
facet or curved surface. The motivation for this work comes from low- 
temperature experiments on helium crystals in equilibrium with the superfluid. 
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culus of variations. 

1. I N T R O D U C T I O N  

The  anc ien t  Greeks  asked,  and  answered,  the first quest ion in the calculus  
of var ia t ions :  W h a t  shape minimizes  the surface for a f ixed enclosed 
volume? It  is the abs t rac t  vers ion of the phys ica l  quest ion:  W h a t  is the 
equi l ib r ium shape of, say, a small  d rop  of water? 

Acco rd ing  to the rules of t he rmodynamics ,  the equi l ibr ium shape 
minimizes  the (free) energy. If  the grav i ta t iona l  energy is neglected,  as is 
r easonab le  for  small  objects ,  then minimiz ing  the energy is equivalent  to 
min imiz ing  the surface energy.  F o r  liquids, the surface tension is a f ixed 
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(positive) constant, for fixed temperature, so minimizing the surface energy 
is equivalent to minimizing the surface area. 

In this paper we consider the equilibrium shapes of crystals under 
gravity (or electric fields). For liquids this question was first analyzed by 
P. S. Laplace about a hundred and eighty years ago. ~28) Crystals have an 
orientation-dependent surface tension so the surface energy is more compli- 
cated than just the area. Additionally, gravity is important or large objects. 
Our common experience is that small water droplets are roughly spherical 
but large ones form puddles. 

One may cite several reasons for the increased difficulty of the prob- 
lem when gravity is included. One is the loss of scale invariance: in the 
absence of gravity the volume acts merely as a scaling parameter. This is, of 
course, not true with gravity. Moreover, with gravity present the variational 
problem is not well defined until one specifies how the object is supported. 
It may rest on a table--the sessile drop r it may hang from the tap-- the  
pendant drop(45'46); and it may cling to the windowpane (which requires 
dirt to act as a pinning force). All these cases are different. 

Here we shall concentrate on the special case where the crystal is 
supported by a table. We choose a fixed crystal-table orientation, i.e., the 
angle between the crystal axis and the normal to the table is fixed. 

Although a natural mathematical question, this is, of course, only a 
physical idealization. First, crystals may have excess energies associated 
with edges and corners ~ l) which we neglect (except for the estimation of the 
corrugation scale following Fig. 1 further). Second, we shall not consider 
effects due to elastic deformation of the crystal. (~) Third, the surface 
tension may depend explicitly on the gravitational field, 7 again something 
we shall not consider. Finally, and this is perhaps the most important point, 
large crystals are seldom in equilibrium. They tend to come in many shapes 
corresponding to metastable states separated by large energy barriers, 
compared to thermal fluctuation. (9'27'44~ 

We have been motivated by recent experiments on helium crystals in 
thermal equilibrium with the superfluid phase. ~5-7'24'25) In these experiments 
it appears that the idealized model is reasonable. Thus, due to the large 
heat conductivity of the superfluid, and the smallness of the latent heat, 

7 The surface tension is determined, in principle, by statistical mechanics. For approximate 
realistic calculations see Ref. 8. Exact results are available for the two-dimensional Ising 
model, O8"39) and certain solid-on-solid three-dimensional models. (23~ It is known that an 
external field changes some of the qualitative features of the surface tension, (44) so assuming 
the surface tension to be g independent is patently false. The statistical analysis of the 
surface tension with external fields (which we shall not consider here at all) turns out to be 
important also for questions related to  adsorption. (34) 
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precise equilibrium can be obtained. The system is exceptionally pure, and 
due to the quantum nature of the solid, which leads, among other things, to 
large fluctuations even at low temperatures, it is conceivable that the crystal 
does not get stuck at a metastable ground state and shape. 

We would like to recall the experiments of J. Landau e t a / .  (5'25) and 
Keshishev et a / .  (24) Both experiments showed that certain facets dis- 
appeared and reappeared as the temperature was raised and lowered. This 
has been attributed to the roughening transition, s'(s'7) The experiments 
differ in important aspects, however. In the experiment of Keshishev et al. 
particular care was taken so that the crystal rested "horizontally" on the 
bottom of the cell. This was not the case in the experiment of J. Landau et 
al. In this experiment the crystal appeared to "droop" suddenly near the 
roughening temperatures. In the experiment of Keshishev et al., the shape 
changed continuously with the temperature. 

There are several questions that these experiments raise. Are the two 
experiments mutually consistent with regard to the sudden change in shape 
or are they just different? Does gravity affect qualitatively the roughening 
transition? Can gravity lead to the appearance of facets in directions where 
no facet existed for the g = 0 equilibrium shape? Can the presence of 
gravity cause facets to be pathological, e.g., nonsmooth? 

Of interest is the relation between facets and step (free) energies. With 
zero gravity the free energy of steps is related to kinks (jumps in the 
derivatives) of the surface tension. (2~'29'43'44) The roughening temperature is 
characterized by the vanishing of the step energy. A consequence of the 
Wulff construction is that a facet implies a positive step energy. In fact, a 
lower bound to the step free energy can be calculated from the area of the 
facet. (44) This is important because it provides a means, in principle at 
least, of measuring a critical exponent associated with the roughening 
transition. 

Of course, with gravity present, the relation between the facet area and 
the step free energy is modified. We show that it is possible to have 
horizontal facets with zero step energy. Of course the surface tension is not 
an arbitrary function, and it might happen that statistical mechanics 
prevents this feature. It would be useful to know the answer. 

Gravity can also induce new horizontal facets which are infinitesimally 
corrugated. This is a pathology. Two possible patterns of corrugation are 
shown in Fig 1. There is a simple intuition why corrugation can occur. 
Gravity favors flat tops while the surface tension may favor edges or 
corners pointing up. 

s For  a review see, e.g., Ref. 44. 
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(o) (b) 
Fig. 1. Two possible patterns of corrugation for a horizontal facet in a gravitational field. 

(a) Grooves or furrows, (b) "meat tenderizer." 

In actual crystals edges and corners have extra energies. These will 
make the corrugation finite. Thus if ~- is the free energy per unit length 
associated with an edge the scale associated with the corrugation in Fig. la 
is of the order ('rl2/o) 1/3, where l is the capillary length 12~o/Aog. "r/a is 
typically of the order of few A. The corrugation is of order of 10 -3 cm if 
the capillary length is taken to be of the order of 1 mm. Similarly, if p is the 
free energy of a corner the scale of Fig lb is of the order (pl/o) 1/3. u/(l is 
of the order of few ~2 so this scale is of order of about 10 -6 cm if l is, 
again, of order 1 mm. 

One would like to know if the equilibrium shape varies continuously 
with the parameters, temperature and pressure, or if there can be sudden 
changes analogous to first order phase transition. These questions are 
related to uniqueness. 

Uniqueness is, of course, a natural mathematical question. Unfortu- 
nately, the answer is known only in the g = 0 case where uniqueness holds 
for general surface tension and for g =/= 0 where it holds for the sessile drop 
of liquid. (16) By a simple continuity argument, uniqueness then holds for 
small positive g's for general surface tensions and for all g for surface 
tension close to a constant (but, of course, not for negative g's when the 
energy functional becomes unbounded below). The question is, given a, 
does uniqueness hold for the sessile crystal for all positive g? If the answer 
is affirmative, a crystal resting on a horizontal table will change its shape 
continuously with volume, and with continuous changes in 0 due to 
changes in pressure and temperature. Discontinuous changes are then 
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possible only if some of the parameters take certain boundary values; for 
example, if the crystal becomes unstable against forming a monolayer 
(complete wetting). Such first order phase transitions in liquids have been 
discussed in seminal theoretical and experimental works of J. Cahn. (1~'32'35) 

If the minimum is degenerate 9 for certain values of the parameters, the 
shape may change discontinuously at these values. This is L. D. Landau's  
argument (3D and it is illustrated in Fig. 2a, b. 

For example, the shape of the pendant  drop clearly can change 
discontinuously with the parameters: When the volume of water reaches a 
critical value the pendant  drop drops. Here, of course, the mechanism 
leading to the discontinuity is not via degeneracy but rather uses the fact 
that the pendant  drop is at a local minimum for the energy and there is no 
global minimum in Fig. 3. 

Related cases where uniqueness is false, in general, are the equilibrium 
shapes of soap films: Plateau's problem. (2'3'14) Another familiar example, (]3) 
taken from capillarity, is shown in Fig. 4. 

An interesting possibility of "first-order" phase transition in capillarity 
of 4He crystals was pointed out in Ref. 7. 

One source of nonuniqueness for the sessile crystal lies in different 
patterns of infinitesimal corrugations. These may all have the same energy 
when the equilibrium shape has such a facet on top. The degeneracy may 
in fact be infinite. However, because the corrugation is infinitesimal all 

',\ , , ' /  \\\\~ / 
\ \ \ ~  / / 

(a) (b) 

Fig. 2. Small changes in the energy functional lead to small changes in the location of the 
absolute minimum if it is unique (a), and may lead to discontinuous and large changes if the 
minimum is degenerate (b). 

9 Nondegeneracy is also related to the question of symmetry breaking. For example, it is not a 
priori obvious, although true, that the sessile drop is indeed cylindrically symmetric. Many 
examples of minimizing solutions whose symmetry is lower than that of the energy functional 
are given in L. Michel. (3D Of these, Jacobi and Poincare's treatment of the bifurcations 
taking place in the equilibrium shape of a rotating fluid is useful to keep in mind in the 
present context. 
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Fig. 3. 

\ \  
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Lack of continuity for the local minimum when the pendant drop drops. 

! I 

Fig. 4. Discontinuous behavior of a liquid drop bounded by two wetted plates. The 
instability is associated with the up and down directions contributing negatively to the surface 
energy. 

these shapes are macroscopically identical. In the latter sense it is still 
unique. 

Recently R. Finn (16) gave a proof that guarantees uniqueness of the 
sessile drop in three dimensions. His method does not generalize for 
crystals since he uses the cylindrical symmetry of the drop to reduce the 
problem from a partial to an ordinary differential equation. 

We have not resolved the question of uniqueness except in two 
dimensions. 

The outline of this paper is as follows. In Section 2 we review the 
fundamental equations and constructions concerning this problem. In 
Section 3 we state our new results. In Section 4 we prove the results in the 
two dimensional case of a wetting crystal. In Section 5 we prove the results 
in three dimensions. 

2. THE VARIATIONAL PROBLEM 

In this section we shall review the variational problem for the equilib- 
rium shape and some of its general properties. We shall derive the Euler-  
Lagrange equation for the equilibrium shape, and discuss Legendre trans- 
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forms and their relevance. The fundamental equations have been worked 
out in 1951 by C. Herring. (2~ Subsequent important contributions have 
been made by Cahn and Hoffman. (12'22~ 

The equilibrium shape is the minimum for the variational prob- 
lem:(21,40 

E= f 6(~)dS+ f cb(x)dV (2.1) 

subject to the fixed volume V = fdV. The geometric objects dS, dV, ~, and 
x are, respectively, surface and volume elements, unit normal and a point 
on the surface. See Fig. 5. q~ is the gravitational potential energy. We define 

= { -2  
O12, ?~ =-. - - s  

where o(t~) is the surface tension of the crystal] ~ [o(t~)> 0] and o12 
= OCT -- OMT. The subscripts C, M, and T refer to the crystal, medium, and 
table, respectively. We further assume 11 that - o ( s  < o12 < 0 ( - 2 ) .  The 
reason for this is that if o12 > O ( - - s  it is advantageous for the crystal to 
insert an infinitesimal cushion separating it from the table. This is complete 
drying. (34'39'47) If 012 + 0(s < 0 the crystal is unstable to forming a mono- 
layer. This is complete wetting. (~1) 

If �9 = 7 . F  then (2.1) can be described as a surface integral only, 
namely, 

E= f [ 6(~) + F(x)" ~]as (2.1a) 

/ / / / / / / / / / / / / / / / / / /  
Fig. 5. The sessile crystal. ~ is the direction normal  to the table; r~ is the normal  to the surface 
of the crystal, dS the area infinitesimal and dV is the volume infinitesimal, x is a generic point 
of the crystal. 

10 In the thermodynamic limit, o may  lack smoothness. It has been shown by L. D. Landau 
that at zero temperature o for a crystal may have kinks at all rational directions. (26) 

11 More precisely, we shall assume this inequality for the o corresponding to the convexified f 
discussed below. 
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For a crystal resting on a horizontal table in a gravitational field 

= ~ ~ ,  z < 0 
q~(x) 

(PC -- PM)g" X, Z >/ 0 

so that 

F(x) = - (1 /2)~p(x �9 x)g, z /> 0 (2.2) 

Here g is the gravitational constant and Ap the density difference Pc - Or. 
The variational problem for g = 0 and no table was formulated inde- 

pendently by W. Gibbs in 1878 and by P. Curie in 1885. It was solved by 
Wulff in 1904, (48) who gave the correct answer but a wrong proof. The 
history of the Wulff solution is quite complicated and amusing. The 
interested reader can find an account of it in C. Herring. (2~ The chapter 
was more or less closed in 1944 when A. Dinghas gave a proof of the Wulff 
construction based on the Brunn-Minkowsky inequality. (21) The full gener- 
ality of the result is due to Herring (2~ and Taylor. (41'42) The Wulff-  
Dinghas solution has the following features: It is a succinct geometric 
construction; it gives a unique (convex) equilibrium shape; the shape scales 
with the volume; the shape is smooth in the same sense that polygons are 
smooth, i.e., it is smooth except for possibly a finite number of edges and 
corners. Finally, the shape depends continuously on the surface tension. 
Analytically, the Wulff construction without a table is the set W -- { x : x .  
< o(~)}. With a table present, the surface tension in the direction of the 
table, cq2, being a difference, may be a negative number. This is a minor 
complication and the Wulff construction generalizes in the obvious way" (47) 

W =  { x : x .  ~ < ~(~)} (2.3) 

Geometrically, the Wulff construction, with a table present, is illustrated in 
F i g .  6. (21'47) 

! 1 

Fig. 6. The Wulff construction for a crystal on a table. The cloverleaf is the polar plot of the 
surface tension. The polygon (broken line) is the Wulff plot, and the equilibrium shape in free 
space. The hatched area is the shape for the crystal on a table with zero gravity. 
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We remark that, for g = 0, it is possible also to determine geometri- 
cally which orientation of the crystal has least energy. This follows from the 
observation that the energy is proportional to the hatched volume in Fig. 6, 
namely,(21,49) 

Eg=o = 3 W1/3V2/3 

W is the volume of W. 
If one expresses the shape in a parametric form (18) then, in three 

dimensions, the surface of the crystal is given by x(u,v), where (u ,v)  are 
two real parameters. 

Let 

N --= ~ux • avX 

/ (N)  --= INIo(~) (2.4) 

f(N) -= INI,~(~) 
where 

= N/IN/ 

dS = lN[ du dv 

The variational problem for the entire surface can be written as 

P_;=f [f(N)-(X/3)N.x+F(x).N]dudv (2.5) 

with F(x) given in (2.2). h is a Lagrange multiplier associated with the 
constraint of fixed volume. 12 

Equations (2.1) and (2.5) completely specify the problem, except that 
we have not specified what class of surfaces the functional is to vary over, 
namely, how wild x(u,v) are allowed. (See Refs. 33, 40, and 41 for these 
questions.) The Euler-Lagrange equations for (2.5) are 

0ux X OvVNf(N) - 0~x • 0uVN/(N)  = [X -- (I)(x)]N (2.6) 

(V N means the gradient with respect to the variable N.) One verifies that 
from the homogeneity properties of f (N) the transverse components of (2.6) 
are automatically satisfied, leaving only the component in the N direction, 

2V x �9 V N f [ N ( x ) ]  = ~, - d~(x) (2.7) 

Some simple differential geometry gives Herring's formula: 

K,[1 + (el" 7,;)2] ~ + K2[1 + (e2" V,~)2] ~ = h - q~(x) (2.7a) 

12 When g = 0  one has 2t= 2(W/V) W3 with W given below, h is therefore positive and 
decreasing with V. The positivity of h holds in general. However, when g # 0, X does not 
decrease to zero as V-# oo, in fact, X - ~ c  = [2gA#(a(s + O12)] 1/2 as shown in Eq. (4.5) in 
two dimensions and Eq. (5.3) in three dimensions. 
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or equivalently 

K l [ e  1 �9 VN]Zf(N) + K2[~ 2 �9 VN]Zf(N) = X - qS(x) (2.7b) 

where KI, 2 are the principle curvatures 13 and ~1,2 the corresponding direc- 
tions in the equilibrium shape. (12) 

The geometric meaning of (2.7) was elucidated in 1951 by C. Her- 
ring. (2~ Further developments are due to Cahn and Hoffman. (12'22) In 
particular, the latter were the first to note the naturalness of V y f  which 
they denoted ~. We shall later remark on the geometric meaning of ~ and its 
relation to Legendre transforms. 

From the point of view of differential geometry there are two obvious 
choices for VNf tha t  would make the left hand side of (2.6) point in the 
direction (in a neighborhood of ~). 

(i) The first is VNf[N(x)] = c o n s t ( x - x  o) by Eq. (2.4). This is the 
analytic form of the Wulff construction (provided f is twice differentiable). 
It solves Eq. (2.6) for qS(x) being a constant which is the case when g = 0. (4) 

(ii) The second choice if vNf= const ~ which holds for liquids with 
no assumption on qb(x). Here we make use of Ref. 17: 

3uX • 3 v ~ -  3vX • ~ = 2 H N  

with H the mean (extrinsic) curvature. This gives the celebrated Young-  
Laplace formula (~'28) 

2ooH + ~(x) = )t 

with o o the (constant) surface tension. 
Equation (2.1) can be rewritten as 

E=fe(z)[f(N)+F.N+o,2N.e]dudv (2.1b) 

where z =-- x3(u, v) is constrained to be positive and v~(z) = 1 if z > 0 and 0 
i f z  <0 .  

Some simplification takes place when the shape can be described by a 
single-valued function y(x•  representing the height of the crystal above 
the point x• of the table. This is the case if the angles of contact are such 

crystal wets the surface. For qb given by (2.2), (2.1) can be that the 
rewritten: 

E[ y] = f dx• O(y)[ f (p) + (1/2)gApy2 + oi2] (2.8) 

where 

p - - V y  f ( p ) - - a ( ~ ) ( l + p 2 )  '/2, ~ = ( - p ,  1 ) / ( l + p 2 )  1/2 (2.9) 

The volume is, of course, V = fy dx• 

13 K is defined to be positive for convex shapes. 
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Starting from Eq. (2.8), the Euler-Lagrange equation takes the simple 
form: 

where .~j denote partial derivatives with respect to Pi and pj while YO' with 
respect to x• and x• Owing to the translation invariance of the gravita- 
tional potential in the horizontal directions, there exist conserved Noether 
currents: 

EOi4=O, 4=(Op, f ) (a~jy) -6q[ f -hy+(1/2)Apg,  Y 2] 

Given f,  let f* be its convexification (the convex envelope of f, or, the 
smallest f with the same Wulff plot. See Fig. 7). A necessary condition for 
the stability of the minimizing surface is the positivity of the second 
variation of the total energy. Since areas and volumes scale differently, the 
direction ~ can occur as a true normal to the surface (as opposed to a 
normal to a varifold-type, infinitesimal sawtooth surface) only if it can also 
appear in a surface that minimizes the surface energy alone. The condition 
for every direction to be a priori possible as a true normal to the equilib- 
rium shape, is then seen to be the convexity of f (and so f =  f*). If f is 
convex, and twice differentiable, the form ON,~f is positive. If this form is 

(2 33) J ^ positive definite f is said to be elliptic. ' For a direction n which does not 
occur as a normal to the Wulff plot W, it is possible to have a surface with 
infinitesimal sawteeth, an apparent normal r~, and consequently the 
(smaller) surface tension corresponding to f*(~) rather than f(~). It is thus 
never any loss to replace the surface tension function f by its convexifica- 

Fig. 7. 

/ ,  

,'( )', 
' , \  / /  

The convexified f is shown in solid lines and the unconvexified f is shown in broken 
lines (on the left). The same for the polar plot of a is shown on the right. 
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tion f* in determining the overall geometry of the equilibrium shape. (4t) 
This also avoids the necessity with dealing with varifold type solutions, 
though they remain of equal surface energy when non-Wulff shape normal 
directions are present. 

V can be scaled to 1 by letting g ~ g V  2/d and E ~  E V  (d-1)/d with d 
the dimension. Because Eq. (2.5) has simple scaling properties (the transfor- 
mation x ~ ax takes N ~ a d- 1N, f___) a d- lf, ~ ~ aqb, etc.) one has a "virial 
theorem" 

d X V  = (d  - 1)E s + (d  + 1)E a > 0 (2.10) 

where Es, a denotes the surface and gravitational energy in equilibrium. 
An application of the virial is the asymptotic of the height, h~,  in the 

V-~ oo limit. In this limit the principle curvatures at the top are expected to 
vanish. This relates X and h~o via Herring's equation. E s and E a can be 
estimated by assuming the shape of a pillbox. Combining this with the 
virial gives a result which, for liquids, is originally due to Laplace(16,28) : 

gAph ~ = 2 [~  + ~ 

It is an interesting observation of Laplace, (28) (see also Ref. 16) that at 
least for liquids, the height approaches boo from above in the three- 
dimensional problem and from below in the two-dimensional one. We do 
not know of a simple explanation of the different behavior of two and three 
dimensions. 

It was mentioned above that Legendre transforms enter naturally. In 
fact, the Wulff construction is nothing else than the Legendre transform, as 
we shall see below. The Legendre transform will also shed some light on 
why the vector equation (2.6) for the three unknown functions x can be 
reduced to the single scalar equation without loss. 

For convex function c(x), the Legendre transform, C(N), is defined by 

C(N) = ~ x [ N - x -  c(x)].  

It has the simple geometric meaning given in Fig. 8. C(N) is then also 
convex. The Legendre transform is self-dual, namely, the transform of 
C(N) is c(x). If the original c(x) was not convex C(N) is still convex and its 
transform is c*(x) which is the convexified c (X) .  

In general, the Legendre transform leads to the correspondence be- 
tween smoothness for the function and strict convexity of the transform 
and vice versa. For example, the matrices 0N, NjC(N) and 0x,~c(x) are 
inverse to each other at N = Vxc(x). 

To apply this machinery to the crystal shape problem, we associate 
with the crystal (which we assume to be a convex object) the function 
which is 0 inside the crystal and ~ out of it. This function is convex. Its 
Legendre transform, X(N), is known as the support function. (37) 
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Fig. 8. 

t 
C 

:,. ,.IC "n 

/ 
/ 

X 

The geometric meaning of the Legendre transform which associates C(t~) with c(x). 

Clearly, 

X(N) = maxx- N 
x ~ V  

This relation can be inverted (assuming strict convexity) giving 

x = VNX(N ) 

X(N) is positively homogeneous of first degree so 

X ( S )  - - IS lq (~)  

The upshot of this is that in Eq. (2.6) one may regard ~ as the independent 
variables and q(~) as the single unknown function to be determined. 
Indeed, the Wulff construction with the table and convex f is the statement 
that 

X(N) = ( 2 / k ) [ f ( N )  - o ,2N-~]  (2.11) 

3. NEW RESULTS 

Without loss of generality, we assume throughout this section that f is 
convex. We also continue to use V to denote either an equilibrium shape 
for g > 0 or the volume of such a shape and with W the same for g = 0. 

1. There exist solutions to the problem in the class of "(~,,8)- 
restricted sets." This follows from techniques in Ref. 2, Theorem VI.2. The 
results as stated there have a hypothesis t h a t f  be a continuously differentia- 
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ble function; however, since f is a constant coefficient integrand the step in 
the proof where this is used can be by-passed by using dilations to regulate 
the volume rather than the deformations of VI.6. 

2. Properties of E. The stability against complete wetting [i.e., o12 
> - a(~)] guarantees that 14 

The first inequality follows from the positivity of the gravitational energy 
and the second from the assumption of no complete wetting. From the 
scaling properties and the positivity of the gravitational energy one finds 
immediately that E is an increasing function of V. Since E is clearly 
subadditive, Ev, + v2 <<- Ev, + Ev2, E ( V )  is concave downward. X is uniquely 
determined by V but not vice versa (see 4.1(ii) below).t5 

3. X/> ~(x). From (2.7b) this is true at the top of the crystal. By the 
monotonicity of �9 it is then true everywhere (this is not really a new result). 

4. From (3) and (2.7a, b) we conclude the following: 
Ca) The equilibrium shape for g > 0 can have facets (which implies 

KI, 2 = 0) only in directions where f* is not twice differentiable (i.e., W has 
facets or edges), except that an additional horizontal facet is not ruled out if 
X - maXx~ vq)(x). 

(b) Edges (K 1 = ~ )  and corners (Kl, 2 -----o0) in V imply that the 
second derivative of f in the corresponding directions are zero, and again 
only occur in directions where edges and corners occur in the Wulff shape. 
(Note that we cannot conclude directly that if ~ does not occur as a normal 
to IV, then it does not occur as a normal to V.) 

5. We give a simple derivation of the contact angle equations. Upon 
differentiating the functional, Eq. (2.1b), one finds terms proportional to 
$(z) = dzv a. These give the boundary condition. Collecting these terms gives 

N(a,2 + ~- VNf ) + ~[ f (N)  - N .  7Nf  ] = 0 

Since f(N) is positive homogeneous of first degree, this can be written as a 

14 E may fail to be positive, even without complete wetting if there is more than one direction 
where the surface tension is negative, e.g., Fig. 4. 

15 Because of the unique determination of k by F, uniqueness for the variational problem with 
fixed F is given by uniqueness for the problem with fixed ~. Since the contact angles are 
uniquely determined the question is translated to the uniqueness of solutions to a certain 
nonlinear partial differential equation with prescribed boundary conditions. This is, unfortu- 
nately, a hard problem. In fact the route is often transversed in the opposite direc- 
tion. (15'3~ Namely, uniqueness of solutions of nonlinear differential equations can 
sometimes be shown by constructing a variational problem with a convex functional whose 
Euler-Lagrange equation is the requisite one. The variational problem posed here is clearly 
not convex if f is not convex. This is not a serious obstacle because, as argued above, f may 
be replaced by the convexifiedf*. More serious is the v~(*) in Eq. (2.1b), which is not convex 
and cannot be argued away. 
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generalized Young-Dupre (1) equation 

0"12 "l- 0N, f ( N  ) = 0 (3.1) 

The solution for the contact angles can be given a geometric interpretation. 
Since Eq. (3.1) is independent of g, it is the solution given by the Wulff 
construction. Note that in solving for the Legendre transform X(N), the 
boundary condition is 

ONzX(N ) = 0 

which can be written equivalently as Eq. (2.11). 
6. In general dimensions, if f is elliptic, then there is no gravity 

induced faceting for any g (see Section 5 for proof). 
7. If W is polyhedral and there is a corner [resp. an edge] pointing up 

in W, and if V is convex, then for large enough g relative to the volume of 
V there is a facet on top of V [resp., either there is a facet on top of V or V 
is curved near its top]. (See section 5 for the proof of these results.) (To 
show that V must be convex does not seem easy though it looks like a 
minimum within a class of convex sets can be shown to be a local 
minimum for Eg if W is polyhedral. The proof of these statements will not 
be given here, however.) 

8. In two dimensions, and in the case that the surface is wet by the 
crystal, then (i) faceting is possible with large enough g provided f is not 
elliptic near ~ = 2, (ii) solutions are unique and convex, and (iii) solutions 
are given explicitly by quadrature. (See the next section for proofs.) 

4. S O L U T I O N S  IN T W O  D I M E N S I O N S  

Throughout this section we denote by f the function we called f in 
section 2 [Eq. (2.9)]. Also a factor of A 0 will be absorbed in g. 

For a wetting crystal in two dimensions the equilibrium shapey(x)  can 
be solved by quadrature. The reason for that is that Euler-Lagrange 
equation y . f "  = gy - X (where)~ = dy /dx ,  f '  = d f /dp  and p --=))) has a 
first integral associated with the invariance of the energy functional under 
translations in x. There is an exact analogy to ordinary Newtonian mechan- 
ics where time plays the role of x. In the latter, the integral expresses 
conservation of energy. In more than two dimensions one has, instead, 
conserved Noether currents. We did not get any mileage out of these so we 
restrict ourselves to two dimensions. One finds 

k (p )  + 2ty - �89 ~22 = const 

where 

k (p )  =--p . f ' ( p )  - f ( p )  (4.1) 

Evaluating k(p)  at the end point and using the contact angle equation, we 
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arrive at the requisite differential equation: 

k ( p )  + hy - �89 g, y2 - 0,2 = 0 

Avron, Taylor, and Zla 

(4.2) 

4.1. Strictly Convexf  with f' DifferenUable 

For this class of f,  corresponding to each value of k(p) ,  there are only 
two values of p, one positive, the other negative. Furthermore, k(p)  is a 
continuous function. 

Let us rewrite Eq. (4.2) as 

Xy - i g y 2  = K ( p )  = - k ( p )  + o12 (4.3) 

and plot the two sides of the equation separately (Fig. 9a, b). In this form 
the left-hand side contains only the volume and gravity (surface) effects. 
Note that, for h > he, (4.3) can be satisfied by two values o f p  ( ~  d y / d x )  
for each value of y such that 0 < y < K(0). These two values of p 
correspond to the two sides of the crystal, of course. Clearly, for h < h c, 
(4.1) cannot be satisfied in this manner for a l ly  < K(0). The explicit value 
of ?t c may be found from the graphs, or equivalently, from an explicit 
equation for h, the height. Now, let h - - y  (p = 0) (4.3) implies that 
M~ - (1/2)h 2 = g(0), so that 

gh = h - [X 2 -  2gK(O) ] 1/2 (4.4) 

Replacing K(0) by its value o[(0, 1)] + o12 one obtains, for this to be real, 

X >/hc = {2g[ o((0, 1)) + O12]} 1/2 (4.5) 

Fig. 9. 

Xy- -~ gyZ X>X 

\ =Y 
X<Xr 

K(p) 

--~p 

(a) (b) 

(a) The left-hand side of Eq. (4.3) and (b) its right-hand side. The intersection with 
K(p) = 0 gives the contact angles. 
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We will show that, if f "  > 0 at p = 0, then, Xc and h(Ytc) are related to the 
infinite volume limit. But first, let us give a heuristic argument. In the limit 
7~ ~ X,, ik - gh ~ O. By the Euler-Lagrange equation, this means y ~ 0 (at 
p = 0) given f " ~  O. Since this implies that the curvature at the top 
vanishes, y stays at h for a longer and longer part of x leading to V = oo. 
Note, as we have conjectured in general in the previous section. 

h(?~c) = {2[ o((0, 1)) + ol2] /g  ) 1/2= h~ 

We seek a parametric form where x and y are both functions of the 
parameter p. Equation (4.3) can be solved easily to produce y(p) :  

g,y(p) = ~ _ [?~2 _ 2gK(p)  ]l/2 (4.6a) 

(We have kept only the physically meaningful root.) For x(p),  we may use 
dpK= - p f " ,  x = fdyxdy  = f d j ( d p / p )  and choose the origin (x = 0) to 
be at the right end of the crystal (Fig. 10). This yields 

x(.): - f._l,,(.,)E;- w<(.,)l- , (46b) 

where p_ refers to the negative root of K(p)  = 0. With this representation, 
it is easy to get V as a function of ?~: 

v= f yax= f "_+([l- 2.K(p')IX'] -1/'- l}[f"(p')Ig]ap' (4.7) 

where p+ refers to the positive root of K ( p ) =  0. (Of course, the second 
term is integrable. Although it can be related to the contact angles, we did 
not find this form useful.) We discuss several features of these formulas for 
the cases h > hc and h = X~ separately. 

(i) ?~ > 7~. Since the integrands are bounded, everything is well de- 
fined; for each X and g, one can get a unique x, y, and V. If we regardf(p)  
as given, with ~ and g as variables, then Me, Xy, and ~2V [or (gy)l/2, 

Y 

..... ~ X 

Fig. 10. The choice of origin for the x coordinate for Eq. (4.6b). 
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(gx) 1/2, and gV] are functions of the "scaling variable" ~ _ k 2 / g  alone. 
Using (4.6) and (4.7), one sees readily 

3---V-V3~ g < 0 and 3(x,3h y)  g,p < 0 

so that, by (4.4), 

3V g > 0  
3h 

This is to be contrasted with three dimensions where 3 V /3h  can become 
negative.(16,28) 

(ii) )t = Xc. Depending on t ip ) ,  the infinite volume limit may or may 
not be reached as k--> 2%. The possible divergence of V (and x) rests on 
(X2 _ 2gK)1/2 = (2g)l/2[K(O) _ K(p)]l/2 for ~ = Xc. Thus, the behavior of 
K (and hence of f )  near p = 0 controls the finiteness of V. From (4.7), the 
condition for V(Xc) = oo is fp f ' (p) /[K(O)  - K(p)] ~/2 diverges as p--> 0. If f 
is at least four times differentiable, the Taylor series for f must be o[(0, 1)] + 
cp 2 + O(p 3) with c > 0, for V(hc) = oo, so f must be elliptic near p = 0. 

A more interesting phenomenon occurs when (4.6), (4.7) converges for 
= ~%. Then, define 

Y+_ =-foP• f " (p) [  K(O) - K(p)- ' /2]dp (4.8) 

so that 

Wc_ -- x(O) = - E _ l ( 2 g )  '/2 (4.9a) 

W~+ =---- x (p+ ) - x(O) = E+/(2g)  1/2 (4.9b) 

V~ ..~ V(~.~) -----{if(p+) - i f ( p _ )  - [K(0)]i/2(Y~+ - E _ ) } / g  (4.10) 

See Fig. l la for a picture of W~_+. For V > V~, the solution is made of 
three pieces, as in Fig. 1 lb, with a faceted section in the middle, of height h~ 
and width W = ( V  - V~)/h~. In both cases, hoe -- h~ although, in the latter, 
hc is reached at V -- V~ < oo and d h / d V  = 0 for V > V c. Finally, we point 

-.,,,- We_-,,.- .--We + - , , -~- ' -  

I 
h 

We_ ~,---- W ~ We+ 
~ X  

Fig. 11. Gravity-induced faceting. For small volume the crystal is as in (a) with no gravity 
induced facet. For larger volume there is a gravity induced facet of length W, (b). 
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out that, for fixed V, this gravity-induced facet appears in the latter case at 
the critical value 

gc = { f ' (P  + ) - f ' ( P -  ) - [ K(0) 11/2( y + - E_ )} / V 

4.2. Strictly Convex f with f' Piecewise Differentiable 

Next, let us consider natural facets (i.e., facets that occur when g = 0) 
at a finite number of orientations p~, at which points, f '  is discontinuous. 
Now at these points, K is "undefined." However, as in the g = 0 case, we 
simply regard y as the parameter at these points and let it vary between 
y ( p , ~ -  0) and y(p,~ + 0). In the meantime, instead of (4.6), we use the 
definition p -- dy / dx to obtain 

x ( y )  = (y/p,~) + const, y(p,~ - O) < y < y(p,~ + 0) (4.11) 

(We will consider p~ = 0 separately.) The single constant in (4.11) can be 
used to satisfy the boundary condition at, say, the left end of the facet. 
Away from these facets, (4.5) still holds while (4.6)-like formulas must be 
derived. Define 

x,~(p)= _ ; P f , , ( p , ) [ ?  2 _ 2gK(p , ) ] - l /2dp ,  (4.12) 

y,~+_ --y(p~, - 0) (4.13) 

An --=Y~+ -Ya- (4.14) 
and 

P0 -- P - ,  h 0 -- 0 

Then the shape is summarized by 

x ( y )  = xo_ + ( y -  yo_ )lp~ 

for the p~ facet and 

gy(p)  = ?t - [ ~ 2  - 2 g K ( p ) ] ] / 2  l 

x(p) + x (e) J 
where 

ot--I 

xo_ = E AB/PB] 
B=O 

(4.15) 

and 

(4.16) 

p~ < p  <p~+] (4.17) 

(4.18a) 

x,,+ = x,~_ +A /p,~ (4.18b) 
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A,, 

Y 
Y.+ 

Y.- 

I 
! 

X~_ X~+ 

Fig. 12. The effect of gravity on facets. 

X 

A picture of the region around a facet is shown in Fig. 12. 
We remark that the length of a facet (l~) generally changes when g is 

applied. Using (4.2), it is easy to derive 

/~(g,X) = /~(0 ,h) [  1 - gh~/X]-! 

where h a is the height of the center of the facet (with g present) above the 
table. 

To be complete, we need to consider the case p~ = 0 for some a. 
Physically, this is the case where a natural (g  = 0) facet is parallel to the 
table top. Note that pf' has no discontinuity even if f '  has one. Thus, 
y~_ =y~ +, which indeed corresponds to a horizontal facet. The length of 
this facet ( x ~ + - x ~ _ )  is simply [ o ' ( 0 - ) - o ' ( O + ) ] / [ X Z - 2 g K ( O ) p / 2 ,  
which may be obtained formally from limpo_,oAJp ~ or f"(p)--> 6(p) [dis- 
continuity]. If no p~ is zero, then the possibility of gravity-induced faceting 
again follows the discussions in Section 4.1. 

4.3. General / 

To go one step further, we consider the class of f ' s  which contain 
sections linear in p. As we have shown in previous sections, nonconvex f 
may be replaced by f*. 

Recall that, for g = 0, sections linear in p correspond to corners in  the 
equilibrium shape while the orientations associated with the p's in this 
interval are not displayed in the shape. With the exception of the case 
where a corner appears at the peak (i.e., a linear section which includes the 
point p -- 0), no new phenomena occur for g > 0. Physically, this is hardly 
surprising. Mathematically, equations (4.5)-(4.7) already embody these 
cases: f "  -= 0 while K = const for those p's in the linear section of f. Thus, 
both x and y remain constant as the parameter p varies through this 
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h w 

(Q) (b) (c) (d) 
Fig. 13. Infinitesimal corrugation: A g = 0 pyramid, (a), will gain potential energy if g is 
large enough by splitting as in (b) and will further gain potential energy, without increase of 
surface energy, by forming the "mountain chain" in (c). The optimal shape is shown in (d) 
with W being flat but infinitesimally corrugated. 

interval. In particular, the tangent cones to V are the same as the tangent 
cones to W as long as the linear section does not contain p = O. 

If a linear section contains the point p = O, however, there is again the 
possibility of gravity-induced faceting, although the facet is actually an 
infinitesimal sawtooth. We will illustrate this phenomenon with a simple 
example and state the results for the general case (the proof in the next 
section applies to the two-dimensional case as well). 

To keep the illustration simple, let us consider o12 = 0 ,  O(/'~) = O 0 for 
=~-(+_ 1, _+ !)2 and ~ otherwise. 16 The g = 0 case is just a "pyramid" 

(Fig. 13a) of height ~ and base 2~/-V. 
The energy is simply E 0 = 2%(2 V) 1/2. Now, suppose g > 0; then the 

total energy for this single pyramid configuration is Ep = E0(1 + ~-2/3), 
where ~.2= gV/(2~/2 %). If the shape still has only the two given normal 
directions, the shape could split in two (Fig. 13b) with a fixed increase in 
surface energy and gravitational gain proportional to g. However, Fig. 
(13b) is not a stable configuration: take a little square from the top of one 
pyramid and put it in the valley (Fig. 13c). Clearly, there's gravitational 
gain without increase of surface energy. The limiting form is a sawtooth- 
like plateau (Fig. 13d) with infinitesimal "teeth." The total energy of such a 
configuration is ~-o0(2h + w) + g(h3/3 + hZw/2). Minimizing this energy 
with respect to h and w, subject to the constraint h(h + w) = V, we arrive 
at the result E, = E0(~--1 + T/3) for the total energy of the sawtooth 
plateau. Of course, this configuration exists only if w > 0, which turns out 
to be a condition on g, i.e., 

g > gc = 2v~-o0/V (4.19) 

Comparing the energies associated with the single pyramid (Ee), Fig. 13a 
and the "mesa" with a sawtooth plateau (E,), Fig. 13d, it is easy to see that 

16 We could equivalently use the convex integrand with this W. 
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Total 
Energy 

E p  

Es 

I - g  
gc 

Fig. 14. gc is the critical g where a sawtooth facet appears. There is exchange of stability 
between the "pyramid" and the "mesa" shapes. 

Ep > E s for g > g~. So, gc is precisely the point where this type of gravity- 
induced facet provides a lower energy configuration (Fig. 14). "r is a 
dimensionless parameter indicating when the sawtooth may appear if V or 
o o is changed instead of g. 

To know that the top facets rather than curves requires ruling out 
infinitesimal sawteeth (varifold-type solutions if f is not convex) with 
tangent line slope other than p = 0. However, if there were such tangent 
lines a deformation which pushes in some high sawteeth and pushes out 
some lower ones (Fig. 15) would result in a configuration with approxi- 
mately the same surface energy and lower gravitational energy; therefore 
no such tangent lines can occur. Convexity of the solutions can be shown 
by a similar argument. 

For general f which is nonconvex in the neighborhood of p = 0, the 
critical gc may be found in a manner similar to the previous sections. 
Convexify f to f*; then K(p) = K(0) for a finite interval containing p = 0. 
Thus f f"[K(O)- K(p)]l/2dp always converge and, if there are no facets in 
the g = 0  shape, the equations (4.8)-(4.11) are still valid. If there are 
discontinuities in f ' ,  these equations need to be generalized as in Section 
4.2. 

Fig. 15. Infinitesimal sawteeth are unstable for nonhorizontal directions. 
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5. PROOFS IN THREE DIMENSIONS 

Again, we assume that f is convex and absorb Ap into g. 

1. Theorem.  There is no gravity-induced faceting when the surface 
tension is elliptic. 

Proof. Suppose that ~ is an open subset of R n (for the three- 
dimensional case n = 2) and y : f~ ~ R is such that the graph of y over ~2 is 
part of the boundary of a compact solid V of prescribed volume minimiz- 
ing the total energy (Fig. 16). Since the surface tensionA function is elliptic, 
the matrix Op, Ff[Ay(x• ] is positive definite, where f is given in Eq. (2.9). 
We hencefortlq abbreviate x• by x. Furthermore the boundary of V is 
smooth (2) and in particulary is a twice continuously differentiable function 
on ~2. Let h > 0 be the height of the crystal V so y(x)  < h. Suppose there is 
a facet at height h; then ~0 = (x ~ f~ :y(x)  = h) is strictly contained in 
and contains some nonempty open subset of fL (Since the crystal eventu- 
ally touches the table and the boundary of V is smooth, one can always 
choose ~2 large enough so that ~0 is a strict subset of fL) The Euler- 
Lagrange equation 

i,j=l 

implies h = ~/g  [this follows from Eq. (2.7b) since a facet on top gives 
K1, 2 = 0]. If we write 

a ~ ( x ) = O p j [ V y ( x ) ] ,  ; , j =  1 . . . . .  n 

. ( x )  = y ( x )  - h 

then the Euler-Lagrange equation becomes 

aO(x)Ox,~u(x) - gu(x) = 0 
i,j=l 

Fig. 16. 

h 

/2 r 

The construction used in proving 1. ~0 is the putative gravity-induced facet, h is the 
height of the crystal. 
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Since the matrix [aq(x)]y is positive definite and g i> 0, we infer from the 
strong maximum principle of E. Hopf(19) that u cannot achieve a nonnega- 
tive maximum in a unless u is constant. Therefore u(x)  = 0 for each x in f~; 
hence y ( x )  = h for each x in f~. This contradicts the fact that ~0 does not 
equal fL �9 

2. Proposi t ion.  Suppose that V is a solid of prescribed volume 
which gives a local minimum for the total energy E and that W (the g = 0 
shape) is a polyhedron. Suppose that ~ r ~ has the property that either o is 
smooth at r~ (so that r~ is one of an open set of unit vectors corresponding to 
a corner of W) or o has a crease at ~ which is perpendicular to some 
horizontal vector (so that ~ is one of a one-dimensional family of unit 
vectors corresponding to a horizontal edge of W). Then, in the first case, 
is not normal to V, and in the second case ~ is not normal to V if V is a 
convex polyhedron. 

Proof. Suppose that V has normal t~ at point x, where t~ corresponds 
to a corner of W. Deform V in a neighborhood of x by pushing V out so 
that it looks like the corner of W corresponding to t~; let A V be the change 
in volume (Fig. 17). 

The change in surface energy due to this deformation is precisely zero 
if the boundary of V is planar near x; otherwise it is zero to first order in 
A V.(41) The change in gravitational energy is gA Vz o where z 0 = x .  8. Now 
rescale this deformed V back to the original volume, by the scale factor 
s = [ V / ( V  + A V)] 1/3. As usual, the total change in energy, assuming V is 
at equilibrium, is, to first order in A V 

0 = A E  = A V ( -  ?~ + gZo) 

But r~ 4: ~ implies that z 0 < h and hence - X  + gz o < 0, a contradiction. 
In the second case, there exists nl and n2, normals to adjacent faces of 

IV, such that ~ = air] 1 + a2~ 2 for some positive a l ,a  2. Suppose V is convex 
and a polyhedron. The boundary of V near x must look like Fig. 18; that is, 
it is a ruled surface (with horizontal rulings), breaking off at the ends of the 

Fig. 17. The construction used in proving 2. Directions which are absent in the g = 0 shape 
are absent by an instability argument also when g 4 ~ 0. 
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f I I I IIII II II i /  

-,, ~ ' ~  

/ ~ / \ 
I I I  I 

Fig. 18. The ruled surface used in the proof of 2. 

rulings to other plane segments. We may restrict this part of the boundary 
of V to be a quadrilateral. For small enough c and 0 < 6 << E, we deform V 
as indicated in Fig. 19, making a horizontal furrow of depth 8 at height 
z 0 = x 0 �9 s and a horizontal ridge of height 6 at height z0 - E; the normals 
to the sides of the furrow and ridge are ~1 and ~2. 

Since o(~) = adr(~l) + a20(r~2),(41) the only change in surface energy 
due to this deformation is from what happens at the ends of the ridge and 
furrow; since the same areas are cut out for the furrow as are added to the 
ridge (and in the same plane segments), the change in surface energy is zero 
(in the curvilinear case, this is not true, and this reasoning fails). The 
volume cut out to make the furrow is of order 82llC0, where c o is some 
positive constant and l I is the length of the furrow. The volume added to 
make the ridge is (to order 6 2) 6212c0, where l 2 is the length of the ridge, 
leading a net volume change of A V ~  62c0(12 - ll). The gravitational energy 
change is gzo A V -  e8 212c o. Again, we rescale and deform V back to the 
original volume, obtaining the energy change 

AE = A V ( - A  + gzo) - eg6212Co 

/ 

7 

O--E 

Fig. 19. A ridge and a furrow which lower the energy of the putative surface. 
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If l 2 -  I 1 /> 0, then AV >I 0 and hence AE < 0, a contradiction.  If l 2 -  l 1 
< 0, then one can run this deformat ion in the opposite direction, making a 
ridge at height z 0 and  a furrow at height z 0 - e. One obtains AE = O(62), 
A V < 0, and 

o = AV[ - X  + gZo + J2/(Z,  - 12)] 

But c/ ( l  1 - 12) is constant  as a funct ion of e, and l 2 varies (since l 2 ~ ll). 
This is a contradiction. �9 

3. Theorem. There is gravity induced faceting or curvature if W is 
polyhedral  and V is convex. That  is, suppose that V = Vg is a solid of 
prescribed volume which minimizes Eg (the total energy with gravitational 
constant  g), and suppose that  Vg is convex. Suppose further that W (i.e., the 
g = 0 crystal) is a polyhedron which does not  have 2 as a normal.  Then  if g 
is large enough, V h a s  a facet or is curved on top; in case W h a s  an edge on 
top, suppose further that V is not  curved on top. 

Proof. Suppose that V is convex and has no facet on top; in case W 
has an edge on top, suppose further that  V is not  curved on top. We will 
show that for large enough g, this contradicts the minimali ty of V. 

Let h be the max imum height of V, and let m = dimension {x ~ V: 
2 - x  = h}. If m = 0, there is a corner  in V pointing up; if m = 1, there is a 
horizontal  line segment L of length l > 0 on top of V. By assumption 
m < l .  

Since Vg is at equilibrium, ?t - gh >>1 O, and therefore (from the virial 
theorem ?t < const  gl/2), h must  go to zero as g goes to infinity. By the 
convexity of Vg, and  the fact that  all directions near 2 do not  occur  as 
normals to Vg, 

cons th  3 >/volume(Vg) ,  if m = 0 

cons th  3 + cons thZ/> /vo lume(Vg) ,  if m = 1 

Thus we have an immediate  contradict ion in the case m = 0, since the 
volume is fixed. 

In  case m = 1, we examine the pillbox compar ison surface more 
closely. Letting h c be its height, the gravitational energy is gVhc/2 and the 
surface energy is no  more  than [ 0 ( 8 ) +  ol2]V/hc+4(V/h~)l/2h~maxo. 
Choosing h~ = [2(o(2) + Ol2)/g] 1/2, which is the value which minimizes the 
total energy of such a pillbox, ignoring the lower terms, we obtain E~ 
= V[2g(o(2)+ o12)]1/2(1 + O(1/g)}.  Since the pillbox is a compar ison 
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shape, E < E C. Note that 

7t = (2E s + 4E  C ) / 3  V < 4 E / 3  V < (4 /3 ) [2 (0 (2 )  + ai2)g ] 1/2 

since h is the maximum height of V, then }t - gh > 0 and we have 

h < X / g  < ( 4 / 3 ) ( 2 [ o ( 2 )  + o12]/g} 1/2= (4/3)h c 

Assume the ridge in V runs parallel to the y axis from y = 0 to y = l. Let 
w(y) be the maximum width of the cross section of V a ty .  Let a = (mino) 
/ [0(2)  + a121, and let a be such that h would equal aw if the cross section 
of V were a triangle (and the normals to the sides of V were tlj and ~12, the 
normals to W on either side of the top ridge). Let ho(y ) = h -  aw(y). 
Proposition 2 implies ho(y) > O, since V is convex and noncurved. 

We have 

E S )[0"(2) + 0"12] fol(w "4- aho) dy 

since V < hflo w dy, and since 

Es < Ec = 2[0 (2 )  + Ol2]V/h c 

we have h > hc[1 + aho/w]/2. 
If h 0 < h J 4 ,  then (since in particular h > h~/2), we have w > hc/4a. 

Otherwise, 

h = h o + aw > hcaho/w > (3/2)aah~ 

(since h 0 < h < (4/3)hc); solving this inequality for w one obtains 

w > - h  0 + h0[l + (3/2)o~a]1/2>[(1 + (3/2)oLa) 1 /2-  1 ] h J 4  

Thus w is always at least a fixed fraction of h~. Since (4/3)hc > w + h0, w is 
also at least a fixed fraction of h. 

Finally, this implies that there is a deformation which flattens V, keeps 
w the same, and reduces the height of the center of gravity of each slice by 
at least a fixed fraction of w, and hence of h and h~. Therefore this 
deformation decreases E by an amount  proportional to E < Ec. This 
contradicts the fact that E is assumed to be the minimum value of the total 
energy (and justifies the neglect of the lower-order terms in the energy). [] 
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NOTE ADDED IN PROOF 

After completing this paper, the authors received a preprint from C. 
Rottman and M. Wortis entitled "Statistical Mechanics of Equilibrium 
Crystal Shapes: Interfacial Phase Diagrams and Phase Transitions" which 
deals with gravity-free cases. Also, gravity-induced curvature rather than 
gravity-induced facetting seems to be the rule when W is a polyhedron with 
an edge on top, according to current research by J.E.T. 
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